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amic yst and stabilit
Dymu al systems and stability

by Jack K. Hale

T, " Introduction. Of basic importance in the theory of a

dynamical system on a Banach space P is the concept of a limit set
u(?ﬁ of an orbit y through a point @ in 4. One can be assured
that «(y) is nonempty and invariant if 7y Delongs to a compact sub-

sgt of 4. In.applications it is much easier to show that an orbit
belongs to a bounded set than it is to show it belongs to a compact set. How-
ever, if the dynamical system arises from an ordinary differential equé-
tion and Z is therefore finite dimensional, the local compactness of
B insures that a tounded orbit belongs to a compact set of %4. If
'the dynamical system arises from a functional differential equation of retarded
type, then 4 is infinite dimensiénal and not locally compact. How-
ever, for a certain class of such equations, it is easily shown that
bounded orbits do belong to cbmpact subsets. The basic reason for this
nice property in retarded functional differentialkeQuations is that the
trajectory becomes "smoother" with the evolution of the'system.

If the dynamical system arises from a sysﬁem of functional
differential equations of neutral type or from hyperbolic partial dif-
ferential equations, then trajectories do not in general become sméother
as time evolves. The basic space @ in such situvations is usually a
Sobolev space and the well known Sobolev imbedding theorems implies in
general the existence of a Banach space % such that the unit ball in &
beiongs to a compact set in %. Therefore, any bounded orbit of the dy-
namical system on 4 would have a nonempty limit sét in ¥. The limit

set in ¥ should then enjoy an invariance properhy,



It is the purpose of this paper to exploit these remarks in
some detail. The basic ideas were announced in [1], but certain aspects
of that paper are unsatisfactory for the applications. In section 2 of
this paper we discuss the different types of topologies that may be intro-
duced on the state space for differential equations (ordinary, functional
and partial) in order to obtain dynamical systems. Section 3 is devoted
to a discussion of limit sets and stability to be applied to the limit
dynamical systems introduced in section 4., In section 5 the theory is ap-
plied to specific dynamical systems and section 6 is devoted to a dis-
cussion of the relationship of limit dynamical systems to the extended
system introduced in [1].

The author wishes to acknbwledge the assistance of E. F. Infante

in the preparation of Section 4 and Example 5.3,

A .
2. ' Examples of dynamical systems, Let R denote an n-di-

mensional vector space with norm |+, R" denote the interval [0,») and

if o is a Banach space let Hm&zz be the norm of an element @ in 7.

Definition 1. A'dynamical'system‘On a Bahach space 4 1is a function

u: BT X BB such that u is continuous, u(0,p) =@, u(t+7,0) =

. ey .. +
u(t,u(7,p)) for all t,T 20 and ¢ in %, An orbit (positive orbit) vy =

+ + .
Y () through @ in & is defined to be Y (@) =1thou(t,@). It is some=

times convenient to have the concept of a dynamical system on a subset

e mas wcan,

S of @ Banach space ¥ and this will signify a function u: R+ XS =35

which satisfies the preoperties listed above.
This definition coincides with the term generalized dynami-

A . s N " N 1ized"
cal svstem used by Zubov [ 2 ]. Zubov introduced the adjective "generalized



to distinguish between his definition and that of a dynamical system de-
fined on (-w,w) X % rather than R x A. One could also discuss dynami-
cal systems on metric spaces but except for one example this will not be’

needed here.

Let us give some examples of dynamical systems.

tinuous and for any & in R~ +the solution u(t,t), u(0,€) = &, of the

equation

(1) X = f(x)

exists for all t 2 0, is unique and depends continuously upon +t,E. Uni-

v
o

queness of the solution implies u(t+T,8) = u(t,u(7,£)) for all t,T

; . . n
Therefore, u is a dynamical system on R,

Example 2, Functional differential eguations with finite‘retardation.

ILet C = C([—r,O],Rn), r 2 0, be the space of continuous functions mapping
[-r,0] dinto Rn with the topology of uniform convergence, For any con-

tinuous function x defined on [-r,A), A >0, and any 't in [0,A), °

A

o

1A

0. Suppose f: C -

let x, in C be defined by xt(e) = x(t+0), -r

n . : ' C . L -
R™ 1is continuous and maps bounded sets into bounded sets. A function
x = x(@) defined and continuous on [—r,A), A >0, is said to be a solu-

tion of the functional differential equation

(2) x(t) = f(xt)

with initial value ¢ at 0 if x_=¢ and x(p)(t) satisfies (2)

for t in [0,A). TFor any ¢ in C, assume that a solution x(p)



=

exists on [-r,»), is unique and x(9)(t) is jointly continuous in t,p.
With u(t,9) = xt(w) one easily sees that u is a dynamical system
on C. Local existence, unigueness and continuous dependence is easily
proved if f is assumed to be continuous and locally lipschitzian,

If' r o= Utzoxt<¢) is a bounded orbit of (2), then T
belongs to a compact subset of C. In fact, if there is a constant M
such that | x (o) o =M, t 20, then there is constant N such that
|%(t)] = |£(x,)| =N for all +t = 0. This clearly shows that Y be-

longs to a compact subset of C.

Exanple 3. Functional differential equations with infinite retardations.

Consider the complete locally convex linear topological space A consis-
ting of all bounded continuous functions mapping (—w,O] into R~ with
the topology of uniform convergence on compact subsets of (—w,O]. Dew

fine the wetric p in £ by

o(,¥) = X _Jmy

: . -N _ .

mN = mln(2 2 SuPN—léeé' —N]‘C{?(Q) ~W(CP)l)

A set U in _# is bounded if there exists an M such that supec( o O]]@(G)i <
: AT

M for all ¢ in U. Suppose fF:. 4 —aRn is continuous and maps bounded

sets into bounded sets and let t in (O,A), be defined by 'xt(e) =

Xy
x(t+6), 6 in (-»o,0], for any function x defined on [~w,A); A >0,
For any ¢ in _# , suppose that the solution x(¢@) of (2) exists on
(~w,0), is unique and. x(@)(t) is jointly continuous in t,p. The func-
tion u(t,p) = x((9) is thus a dynawmical system on . Using the tri-

angularization procedure together with arguments similar to those in



Example 2 (see [ 3 1), one shows that any bounded orbit of (2) in A4 be-
longs to a compact subset of A ., Tocal existence and uniquenesé theorems
may be found in [ 47,

A specification of a different metric space of functions
on (-»,0] leads to a different class of functional differential equa-
tions. A very interesting class has been discussed by Coleman and Mizel
[ 5]. A special case of their results concerns the Banach space V of

functions mapping (-,0] into R" with ;

loll, = 1e(o)] + [ x(6){o(e)] a8
where k(6) > 0, IZk(G)dG < o, Sup?ose £1 v - R is continuous and
takes bounded sets into bounded sets and for any ¢ in‘ V the solution
x(¢) of (2) exists on (-w»,o), is unique and X($)(f) is jointly con-
tinuous in t,p. Then wu(t,p) = xt(@) is.a dynamical system on -V and
Coleman and Mizel [ 5] show that any bounded orbit of (2) in V belongs
to a compact subset of V .,

The.above norﬁ of Coleman and Mizéi is guite natural for the
préblem they were discussing; but, in other applications, such a norm is
unsatisfactory since the right hand sides‘ofAeVeh simple differential
difference equations will not be continuous in this ﬁormc It is there-
fore necessary to discuss a more general claés of Banach spaces and the

‘associated functional éiffereﬁfiaihéduatibns;‘hfﬁrAéoﬁerproﬁiéms ig'iswés—
sential to have the property that every bounded orbit bélongs to a compact

subset, We now specclfy a class of Banach spaces with this property.
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Let D =%P((-»,0],R") be a Banach space of functions map-
ping (-»,0] into R" with norm ”'@@’ For any ¢ in & and any B
in [O,w), let @& be the restriction of ¢ to the interval (—w,-B].

This is a function mapping (_w,mﬁ] into Rn. Denote the space of such

functions by 52% and for any n in fZ%, define

Il = 1ns, (ol o - .

| "l
If x is any function defined on (~%,A), A >0, then for

The space f%é is then a Banach space with norm

each t in [0,A) define the function x, by the relation xt(e) =

t
x(t+0), -0 <6 £ 0.

Let %, =F((-%,A),R"), A >0, be the class of functions
taking (-«,A) into R?  such tﬁat each x in \92 is a continuous
function on fO,A) and  x_ belohgs to 52; We make the fdllowing hy-
pctheses concerning the space Az,

hy) If x isin %, then x_ isin & for all t in

t
[O{W) end x_ 1is a continuous function of +.

hg) A1l bounded continuous functions mapping (;w,o] into
R® are in 4.

h5) For any 620, 820, and ¢ in 4, there is a con-
tinuous function a(®,B,p) nondecreasing in 8, a(d,B,p) 50 as B — o,
a(0,B,0) = 0, such that

n@%éa@mu



w
(@]

for all t =0, p 20, provided that x_ =¢ and |x(t)] =8, ¢
hh) There are continuous, nondecreasing func-

tions b(yv), c(r), vz 0, b(0) = ¢(0) = 0, such that for any ¢ in @,

< 1 g
9= 00wzl 1 + el )

for any B z 0.

h5) There is a nondecreasing positive definite function

a(yv), vz 0, such that

a(je(o)]) = Ilcpllﬁ

Some Banach spaces 4 that will satisfy the above properties
are those consisting of all functions mapping (-w,O] into Rn for

which

loll, = Towp_eqeol®(8)] 1% + 12 Jo(0)] “an(o)

where a2 0 and p is a function of bounded variastion. For « = O,v
these are Hilbert spaces, If this norm is applied to continuous functions

defined on [-r,0] and «a =1, p = O, then this is ’C([-TQO],Rn).

1\

Lemma 1. For any ©

et

O and any @ in 4, there is a continuous func-

tion e(8,9), e(0,0)

i

O such that for any x in & with X, =9 and

|x(s)] =8, 520 and any t in [0,),



Proof: Hypotheses h5 and hh) imply that

2yl = Bl eup_y ool x50} 1 + c<nx‘;n@t>

1A

Kb(8) + c(a(8,t,0))

Since a(S,t,m)k—aO as t -« and is continuous in t, it has a maximum
u(d,p). The desired result is obtained by leﬁting e(8,p) = Kb(é) + c(r(3,9)).
Suppose f:ﬁ?—eRn ig continuous and maps bounded sets into
bounded sets., These hypotheses are sufficient to guarantee a local exist-
ence and continuation theoreﬁ\for soiutions of (2)., For each ¢ in 4,
assume that a solution x(¢) of (2) exists for t = 0, is unique and x(o)(t)
is jointly continuous in +t,9. Then u(t,p) = xt(m) is a dynamical system

on 4,

Temma 2, Suppose 4 is the space satisfying h,)-h.) and (2) defines a

l)- 5)

dynamical system on 4. Then every bounded orbit of & is relatiﬁely

compact in 4.

Proofs Suppose x = x(p) is a bounded orbit in 4. Hypotheéis h5)
implies there is a constant M such thaﬁ | x(t)] =M™ for all t 2 O;
Since f maps bounded sets into bounded sets, it follows that there is

a constant N such that |%(9)(t)] £ N, t 2 0. Compactness in £ is
equivalent to sequential compactness. Take any seguence {x#k} andAthe
continuity of Xy in 1t guaranteed by hl) implies that we may as

well assume that tk - as k -« monotonically, For any o in [O,w)

} is such

choose k(a) so that + , .~ & = 0. Then the sequence ({x
K(a) )

t



that xtk(e) = x(tk+9), 6 in [-0,0] is continuous and bounded together
with its first derivative for all k = k(o). Thérefore, this sequence

of functions is uniformly bounded and equicontinuous on [—a,O] and one
can choose a subsequence which converges uniformly on [-o,0]. Choosing
a = 1,2,... and using the familiar triangularization procedu?e, one can
get a convergent subsequence that will be uniformly convergent on all
compact subsets of (-w,O] to a function W.' The 1imit function V is
continuous and bounded and by hg) belongs to %. For any € >0, choose
B so that a(M,B,p) < ¢/k where a is the function given in h5). If
b is the function given in H#), choose & = ®(e) so that Kb(8) < ¢/2

and choose n = n(e) so large that

Sup-BéGéOlX(tk+e) - x(tj+9)] <9d

for k,j = n(e). From h5) and hh) it follows that

”th"xtjm? = Kb(sup_ﬁéeéofx(tk+9) - x(fj+9)[)
- p B
+ =g x|
e 5%
S 16(5) + 2a(,8,0)
< ¢

if k,j z n(e). Therefore, the sequence {Xt }

is a Cauchy sequence and
k .

the lemma is proved.

It may be more convenient in some applications to show that
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a solution x(@) of (2) satisfies |x(¢)(t)| =8, t 2 0, for some
constant ©., Lemma 1 theﬁ inmplies that the orbit through © is bounded

and one can assert from Lemma 2 that this orbit belongs to a compact set

of A.

Example 4. Functional differential equations of neutral Type. Consider

the special equation
(3) sc(t) = Bx(t-r) + f(x-t), tzo0,

where T 2 0 is a constant and B is a constant n X n matrix.
Equation (3) is a specizl case of a system considered by
Driver [55] in which the initial value ¢ was assuned to belong to the

class AC of absolutely continuous functions with lloll aefinea by
O *
lollyg = le(0)] + [ ]e(6)] co.

If f is lipschitz continuous in ¢ and if ¢ %belongs to AC, then
Driver has shown that a solution x(0) of (3) with initial value @
at zero exists over some t-interval and the function wu(t,p) = Xt(®)
is continuous in t,p over ité domain of definition. Therefore, if
solutions are assumed to exist for all t 2 0, then u(t,p) defines a
dynamical system on AC,

If equation (3) is considered in its integrated form;

namely,
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x(t)

x(0) - Bp(-r) + Bx(t-r) + fgf(xs)ds, tz0,

(k)

x(t) = o(t), t ih [-r,01,

H

then the equation can be considered as a dynamical system on another

space. In fact, Hale and Meyer [ 7] have shown that if f is continuous
and locally lipschitzian on C, then a solution x(@) of (4) with initial
value ¢ in C at t =0 exists over some t-interval and u(t,p) = xt(m)
is Jjointly céntinuous in t,0 on its domain of definition. Therefore,

if solutions are assumed to exist for all t = 0, then wu(t,p) defines a
dynamical system on C.

Equations (3) and (4) have the undesirable property that the
solution x(@)(t), t 2 0, is in general no "smoother" than the initial
value ¢, Therefore, one cannot expect a bounded orbit;necessarily to
possess a limit set. In retarded functional differential equations, this
smoothing property was precisely what madefa bounded orbit have a limit
set. Is it possible in some way to obtain a feasgnable theory of dynami-
cal systems which will enable one to conclude more about a bounded orbit
of (3) or (4) than just the fact that it is bounded? One possible approach
is to try to prove that (4) is also a dynamical system on a space & which
has the property that it can be imbedded in € (or AC) and such that the
unit ball in % embedded in € (or AC) is relatively compact. Any
bounded orbit in % will then necessarily have a limit set in € (or AC)
and one should be able to use this fact to great advantage, This is the
basic idea used so often in the modern theory of partial differential equa-

tions.
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Let Lg[-r,o] designate the square integrable functions on
[-r,0]. We now show that (3) and thus (1) is a dynamical system on the
Sobolev space W% consisting of all functions on {-r,o] which together

with their generalized first derivatives are in Lg{—r;O]. A norm which

is equivalent to the usual one on this space is

lollg = 19(0)1% + [7149(0)]| "ee.

Each element of w; is continuous and the unit ball in Wé belongs to
a compact subset of C.
A function x = x(¢) defined on an interval [-r,Al, A >0,

is said to be a generalized solution of (3) for an initial function o© in

w% if x(t) =o(t), -r £t £ 0, and
(5) f’gﬁ(t)[x(t)-BX(tnr) - fzf(xs)ds]dt = 0

for all continuously differentiable functions wu which have compact sup-
port in [O0,A].

Suppose f: C —»C 1is continuous and locally lipschitzian.
Since ¢ in Wé implies @ in C we know from [ 7] that there is an
A >0 which we suppose < r such that a solution x(p) of (k) exists
on [-r,A]l, is unique and u(t,p) = xt(¢) as a function in ¢ 4s continu-
ous in t,p for t in [0,T] and ¢ in some cpen set in W%, u(0,9) =
P, w(t+7,9) = u(t,u(7,p)). We wish to show that u(t,@) actually be-

1 . ; . 1 . .
longs to W2 and considered as an element of this space W2 is continuous
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in t,p. Since x = x(p) satisfies (4) it obviously satisfies (5). Since

A <r, it follows that

(@
i

P(0a(e) - m(ter) - foalx YasTat

[Ra(e)x(t)at + [ou(e)[BH(t-r) + £(x,)]at

and thus x(t) has a generalized first derivative on [0,A] given by
(6) %(t) = Bp(t-r) + £(x.), 0=+t <A,

For -r £t =0, we also know that =x{t) has a generalized derivative
given by ¢(t). The function Bp(t-r) + f(xy) is obviously square in-
tegrable and thus #%(t) is square integrable. This proves that wu(t,p) =
xt(w) belongs to W; for O £t = A.

It remains only to show that the function X(9)(t+6) =

_du(t,w)(e)/de, ~-r £ 0 £0, as an element of L,[-r,0] is continuous in

t,p. From (6), we have

2(9) (£+6) - %(¥)(t+6) = B[G(t+0-1) - ¥(t+6-1)] + £(xy,6(9)) = £l (V)

(1) t+6 2 0

iIA

() (£+6) - %(¥)(t+0) = G(t+0) - ¥(t+0), t+6 = 0,

A

~r £ 6 0.
Since f 1is locally lipschitzian, there is a constant 1. such that
lf(xt(w))—f(xt(W))] = let(@)—xt(W)IC, 0 £t A and thus relation (7)

obviously implies there is a constant X such that
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5,095, (Dl = Kho-3l+ (o) (1))

In [ 7], it has been shown there is an I, >0 such that th(@)—xt(W)HC s
LlHQ-WHC, 0 £t 57, and, therefore, it(¢) is a continuous function of
¢ uniformly with respect to t in [0,A]. To show the continuity with

respect to t observe that it is sufficient to show this for + = 0 since

u(t,u(T,0)) and u(t,p) is continuous in @. Let z(t+6) =

[

u(t+T,¢)

%(t+0) - %(6), -r = 6

A

A

0. From (6),

5(t) = BP(t-r) - $(-r)] + £(x.) - £(9), t 20,

2(t+6) = §(1+6) - #(0), t + 0

A

0, -r <86 =0,

Tt is clear that

|
Ly

tinuity with respect to t. Since the continuity in ¢ is uniform with

1ét approaches zero as % — 0 and this proves con-
respect to t, it follows that kt(m) is jointly continucus in t,p and,
thus, u(t,p) is jointly continuous in t,p. .

The above remarks show that u(t,p) is a dynamical system on
W; if we assume global existence of ﬁhe soluticns,

One can obviously generalize this example to the system

%(t) = eri:lka(t-Tk) + £(x,)
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Example 5, " Quasilinear hyperbolic equations. Consider the equation

Vi = Vo = (v, VsV,

v(0,x) = 0(x), v, (0,x) = ¥(x), 05 x =1,
(8) v(t,0) =0, v(t,1) =0, t 20, )
where f(vl,vg,v3) is an analytic function of v1!v2,vB in the whole

space, Let ng be the space of functions mapping [0,1] into R

which have generalized derivatives of order £k in LQ[O,l] and these
derivatives vanish at x =0.and x = 1. If ¢ is in Wgo, the norm

“@“Wk is defined by
20

H@H%O = fi[@e b (@2 +enus (005 7ax

where @(J) is the jth derivative of ©.
k-1

20

lows from the work of Sobolev [8 ] that (8) has a unique generalized solu-

For any ¢ in Wk and any‘ ¥y in W , k2 1, it fol-

20

tion v(t,x,m,W) existing on an interval O 2 %t < n and the pair

-
[V(t,‘,@,W),vt(t,',@,W)] belongs to Wgo X WEOl and is a»contipuous func-

tion of t,9,¥. Therefore, if we assume that solutions exist for all

t 2 0, then the function wu(t,®) = [v(t,-,®),v (t,-,8)], ¢ = (9,V), is a

k

-1 ‘
wk ; =
20 X 20 for any k z 1,

dynamical system on the Banach space éZk =W
The famous Sobolev embedding theorem asserts that the unit
belongs to a compact subset of Wgo

any orbit Y (0) of (8) which is bounded when considered as a subset of

ball in WF

20 for k > 4. Therefore,
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.@k will belong to a compact subset of % if k >4 and, therefore,

it is meaningful to speak of the limit of this orbit in @z.

3., Limit sets, Lyapunov functions and stability.

Definition 2. Let u be a dynamical system on Z. For any @ in .@,

the o-limit set w(p) of the orbit through ¢ is the set of ¥ in &

such that there is a nondecreasing sequence {tn}, tn >0, t, 2o as n -

such that Hu(tn,(p)-\lf]i_@ -0 as n ->o, This definition is equivalent to

o(p) = ﬂ@OCl(Uthu(t,cp)).
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Definition 3. ILet wu be a dynamical system on &4. A set M in & is

..................

an invariant set of the dynamical system if for each ¢ in M +there is

a function U(t,p) defined and in M for t in (-»,o) such that

U(O,@) =¢ and for any ¢ in (_m’w)’

w(t,0(0,0)) = U(t+o,0)

for 21l + in R'.
1t should be noted that sets are invariant according to the
above definition relative to the interval (-o,) and not relative to

[0,x). We now prove the simple but very basic

Lemma %, Let u be a dynamical system on ¢ and suppose the orbit
Yﬁ(¢) through ¢ Dbelongs to a compact subset of 4. Then the w-limit

set () of yf(w) is a nonempty, compact, connected invariant set.

Proof: Since yﬁ(m) belongs to a compact subset of é@, it is clear that
ai@) is nonempty and compact since it belongs to a compact subset and is
closed. Supposé ¥ ds in @ and the nondecreasing, unbounded, nonnega;
tive sequence {(t,)} satisfies [u(t ,0)-¥| =0 as n - (the subscript
on the norm is dropped in this proof). ForAa'given 7 in {O,w), there
is an nO(T) such that t -7 20 for nz nO(T) and it is therefore .
meaningful to consider thersequence u (t,0) def u(t+t_,9Y, nz n (1)),

i - - n 2 n’ 3 - fo) 3

t in [-7,7]. By hypothesis, there is an M such that [||u(t,0)|| = M

for all t in R'. Therefore, the sequence Un(t,@), nz nO(T), t in
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[-7,7], is uniformly bounded. Since un(t+s,¢) = u(s,un(t,@)) and

yﬁ(w) is assumed to belong to a compact set, it follows that for any

€ >0, there is a & >0 such that

o (b+5,0) - u (£,0)]l < e

1A

for 0£s=£5% nz no(T), t in [-7,7]; that is, the sequence Un(t,@)
is equicontinuous. Since this sequence by hypothesis belongs to a com~
pact subset of 44, the Ascoli-Arzela theorem implies the existence of a
subsequence which we again label as t ~such that it converges uniformly
on [-7,7]; that is, there exists a function U(t,V¥), -7 £t = 7, continuous
in % and such that limhrawuun(t,¢)~U(t,®)H = 0 uniformly on [-T,7].
Obviously, U(O,V¥) = ¥, Letting now 7T = 1,2,... successively and using
the familiar triangularization pfocedure, we determiﬁe é subsequencé which
is again labeled by tn and a function U(t,W) defined and continuous on
-0 <t < o such that iimn_>énun(t,w) - U(t,¥)|| =0 uniformly on com-
pact subsets of (-w,®). It is clear that U(t,V¥) is in o).

let ¢ be an arbitrary real number in (;m,w). For this K

and any t = 0, we have

”u(t,U(O‘,(p)) - U(‘b+0‘,1lf)”
£ Jlu(t,0(o,¥)) - u(t,u (o,9))]

+ [lu (t+0,9) - U(t, V)]

Since the right hand side of this expression approaches zero as n - «,
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it follows that u(t,U(o,V¥)) = U(t+o,V¥) or o(@) is invariant, It is
clear that (®) is connected. The fact that dist(u(t,p),u{e)) -0

as t — o is obvious and the lemma is proved.

If v is a dynamical system On & and V is a continuous

scalar function defined on %, define the function V(o) = \’/’6 (p) Dby

"9) = T, , o+ ¢ [V(u(t,9))-(p) 1.

on a set G in @ if V is continuous on f}-, the closure of G,
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and V(p) SO for ¢ in G. Let § Dbe the set defined by

and let M be the largest invariant set in 8§ of the dynamical sys-

tem,

Theorem 1. Suppose u 1is a dyrnamical system on f?. If VvV is a
Lyapunov function on G and an orbit yﬁ(@) belongs to G and is in
a compact set of é?, then u(t,p) »M as t - .

In the applications of Theorem 1, one can be assured that an
orbit 7}(@) remains in G if ® Dbelongs to G provided that the con- 7

ditions of the theorem are satisfied for G a component of the set Up =

(@ in 8 : V(o) < o}.

Theorem 2, Suppose u is a dynamical syétem on £. TLet u(t,0)1= 0
for all t (i.e. ® = 0 is an equilibrium point) and suppose zero belongs
to the closure of some open set U and N is an open neighborhood of zero,
Assume that |
i) V 1is a Lyapunov function on G =N N U,
ii) M N G is either the empty set or,zéro,
i1i) v(p) <n on G when @ £ 0,

iv) Vv(0) =n and V(p) =1 when ¢ is in that part of the

boundary of G in N.
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if No is a bounded neighborhood of zero properly contained in N, then
®» £0 in G N N implies either there exists a 7 >0 such that u(t,0)
belongs to the boundary of N_ or u(t,p) remains in G N No but does
not belong to a compact set of G N No'

The proofs of Theorems 1 and 2 are not given since they are
essentially the same as the ones in [10] for ordinary differential equa-

tions.

4, Timit dynamical systems. In the previous section, we stated a re-

sult for determining the limiting behavior of an orbit of a dynamical
system provided the orbit remains in a compact subset of the space. The
problem remaining is to give avproéedure for determining when such a
situation prevails. In Section 2, we have given illustrations of dy—
namical systems (exampleé 1-3) such that any bounded orbit necessarily
belongs to a compact subset of the space. It is in general much'egsier
to show that an orbit is bounded. In fact, this 1s usually the immgdiate
consequence of the existence of a Lyapunov function. In examples 4 and

5 of Section 2, there is ﬁo inherent smoothing effect in the.dynamical‘
s&stem,and thus bounded orbits may not lie in compact sets. On the

other hand, the equations in examples k4 and. 5 défine dynamical systems

on different Banach spaces 52%55 ‘such that, when 32 ig consgidered as
imbedded in ﬁf, the unit ball in %2 belongs to a compacf subset of ¥.
Therefore, in all of the examples it is possible to assert that a bounded
orbit does have a nonempty limit set if the convergence is interpreted

in the appropriate space. These ideas will now be formalized and exploited

in more detail.
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Let 4 and ¥ be Banach spaces., If there is a continuous

linear injection i: %4 — ¥ we shall say Z C%. If & C¥, there is

thus a constant K >0 such that H:L(cp)ufgé Kﬂcpﬂg for all ¢ in 4.

When it is clear from the context we shall think of % as contained in

55, consider @ in % as well as in 4 and therefore omit the connota-
tion i(9).

Definition 4, Suppose 4 C¥ and u is a djmamical system on @ and

%. let B* C¥ be the set consisting of the union of Z and any @ in

% for which there is a ¥ in % such that ¢ belongs to %(\!f), the

w-limit set in % of the orbit ¥ (V) in @ that is,

QL) = PopClelps ult,0) -

Then u: R XB* ~@* 1s a dynamical system and we refer to this dynamical

Roughly speaking, the limit dynamical system of 2 in ¥
is an extension of the dynamical system on B to é, larger set g¥* in‘ ¥
where @* is obtained by taking orbit‘s in 4, considering them as em-
bedded in ¥ and adding their limit poinfs in %. The limit sets of a dy-
namical system divide the space into equivalence classes in which two points
By taliing

belong to the same class if their 1imit sets have common points.

the limit of an orbit even in a larger space, one can still obtain these

Quivalence classes.



If % is a Hilbert space, then the Banach-Saks theorem
[9 ] implies that @* =¢g. In spite of this fact, there is an advantage

to looking at the dynamical system wu in the above manner.

Temma 4, Suppose 4 C¥ and u is a dynamical system on @ and %.
If @ in 4 is such that *r+(q)) belongs to a bounded set of & and
a compact set of ¥, then the w-limit set w(p) of the orbit through ¢
is a nonempty, compact, connected set in _@*,- an invariant set of the
limit dynamical system and dis’cg(u(t,(p) ,o(@)) -0 as t o,

This lemma does not require proof since, using Definition 4’,

it is a restatement of Lemma 3 with % replaced by @g*.

The following result is very useful for the applications.

Theorem 3. Suppose % C‘Sf, u is a dynamical system on % and ¥

and each bounded orbit of % belongs to a compéct set of ¥. Also
suppose the function V@ is a Lyapunov function on (;T@ = {o in 4:

V., (9) < v isaL'unovfnction'nG = in £ v, ( <
g (®) <}, % yap u on G, ={p 1 Z\CP) n},
G@ - Gg’

R ={p in Gg:,_vg(-cp) - 0}

cand N is the largest invariant set in R of the 1limit dynamical

system. If G@ is bounded and ¢ is in G@, then u(t,p) -» N in
¥ as t -,
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Proof: Since Yé? is a Lypunov function on CE@ it follows that

u(t,@) remains in 999 for all t 2 0. The hypotheses imply that it
belongs to a compact set of qif. Theorem 1 completes the proof.

At first glance, the hypotheses in Theorem 3 may look artifi-
cial but in some'respectsbare very natural. In fact, to show that a dif-
ferential equation defines a dynamical system, one often proceeds as
follows, From the general theory, one obtains local (in t) existence,
uniqueness and continuous dependence on tﬁe initial data. To obtain
global existence, one constructs a Lyapunov function and invokes the con-
tinuation theorem to obtain a dynamical system of a subsét of the spaée.
Therefore, the Lyapunov functions have been constructed in the process

of showing the existence of a dynamlcal system,

5. Examples.

In this section, we consider ad equation which generalizes in some re-
spects an equation considered by Levin and Nohel [ 11]) for a finite lag.

Suppose a: R =R 1s a continuous function with 4,4 continuous and

a(t) >0, a(t) <0, ¥(t) 20, t20
(9) t a(t) ~0 ‘as bt oo,

T76P8(t)at < w.

A

For any integrable function k(6) >0, -o <@ 0:'£Zk <w, let @ t@

the Banach space consisting of all functions @z (-%,0] -® for which

lol® = 1903l + [Ok(0)|w(0)| a0
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is finite, Suppose g R - R" is a continuously differentiable function

such that
(10) a(x) = fﬁg(s)ds —»oo as |x| s
For any ¢ in é? for which it is meaningful, consider the
funetion
(11) 2(0) = ~[5a(-0)8(w(0))a6

and the functional differential eguation
. t
(12) %(t) = £(x,) = - a(t-u)e(x(v))au.

The domain of f in general is not the whole épaCe' ég butvthe hypotheseé
on a certainly imply that allvbounded functions ¢ belong to the domain
of f. If g(x) =x and k(6) 2 a(-6), then the domain of; f is &.

Let’ é? be thé‘subset of é?; COnsisting of all functions in
'éa such that supe‘@(e )| <b. One can show that tﬁe baéic local exis-
tence, uniqueness and continuous dependence’ tneorem.for (12) holdp in é?
More specifically there is an A = A(b) >0 eand an r = r(b) = such
that the function xt(@) defined by the solutiop of (lé) through @ in
é% belongs to égr for. t in [0,A] and is continuous in t,@; Furthe?-
more, if x is a solution of (12),'then a few simple calculations show

that
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(13) %(t) + a(0)e(x(8)) = [O8(-0)(JSe(x(thu) Jav)as

“TLemma 5. Suppo'se g(x) has a finite number of zeros. Then every solu~-
tion of (12) with ¢ in Bb approaches a zero of g; that is, an equi~

librium point of (12).

Proof:; For any b and any ¢ in @b’ let V(®) be defined by

(14 V(9) = 6(0(0)) - 5 [24(-0)[ [ e(@(s))ds1 as.

The hypothesis (9) on a implies V is defined on @b and is continu-
ous, A few simple calculations yield \'I((p) along the solutions of (12)

(15) #(9) = - 5 [CE(-6)/gelo(s))asi a0 = 0

0, In particuiar, there is a

i

and this implies V(xt(cp)) s V(o), t

W

constant M = M(b) such that for any ¢ in &, | x(e)(t)] =Mt 0,

® in @b Since our norm in 8 satisfies hypothesis Ihl)-h,j) of Example ~
3 of Section 2, this implies there is an N = N(b) such that I]xt(cp)Hgé
N(b), t 20, ¢ in @b’ Since the orbit 'through o ‘in gb is bounded,
Lemma 2 implies the orbit is relatively compact. 6ne can now apply Theorem
1 directly to this system taking the two Banach Spaceé in that ;sheorem to -
be the same, namely the closure of the subset Jn oﬁ_r Banach ,spaée 4}2 con-

sisting of all orbits of (12) which have initial value in éb for a given

b. This theorem implies from (15) and (13) that the w-limit set of any
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solution of (12) with ¢ in ﬁb exists and is the union of orbits of
(16) ¥ + a(0)e(y) =0

which satisfy

(17) ,[:g(y(ue))de =0, o<1t <_°°" ir @ s) >o0.

Since a(t) >0, &(t) <0, t = 0, there is an éo in (0,») such that

B( So) > 0. Also, continuity of 4 dimplies there is an ¢ >0 such ﬁhat
#(s) >0 for s in [s_-€, s +€]. Since (17) must be satisfied, this im- .
plies the o-1limit set of any solution of (12) with ¢ in [g‘c must be
generated by a;, solution of (16) satisfying F(t) = F(t-s), ~o <t <o, s

in [so—e, so+e]. This impligs ¥ = constant., But this clearly impligs ‘

g(y) = 0. Therefore, the lemma is proved.

52. A stability theorem for neutral equations. Consider the equation

(18) %(t) = lei:lkac(t_'ck) . f(}'{t)’ 20} 0

where - 0 < Ty <7, <el< T £ r are rational and f is continuous and locaily lip-

schitzian on €. We will need to consider the equation

, T
(19) get[I - 5_Bo 1 =0



Theorem 4. If a: R »R, b: R =R, c: Rn — R are positive definite

scalar functions and there is a scalar function Vi Wé - R such that

(20) a(liel) = V@) = o(lel)

1A

and V(IS)(Q) -c(p(0)) for all ¢ in Uﬂ = {p: V(p) < n}, then the

solution x = 0 (18) is stable. If, in addition, no root of the equa-
tion (19) has modulus equal to one, then every solution x of (18) with

initial value ¢ in UTl and ess sup]é(e)l bounded'satisfies
ess supTZT[lx(t)l L %)) 20 as t -

V(m) <71 for

A

Proof: If ¢ is in Uﬂ’ V(lB} £ 0 implies V(xt(@))
g

1\

all t 20 and (20) implies - th(@)uwl < a " (v(p)), t = 0. Therefore,
2 g .

the solution x =0 of (18) is stable. If no root of equation (19) has

modulus equal to one, there is an essentially bounded solution w¥ on

[-r,») of the equation

(21) L u(t) = T Bt ¢ e(b)

if g(t) is bounded on [0,») and the initial fupnction ¥ for w is
essentially bourded. Furthermore, any other solution approaches w¥  exe
ponentially as t — or becomes exponentially unbounded as +t -, In

addition, ess sup_. |w(7)] -0 as t -se if g(t) 20 as t o,

=1
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Let x(®) be a solution of (18) with initial value ¢ in
Uy and ess sup|®(6)] bounded. Then the first part of the theorem im-
plies f(x,(p)) and ft_rig(w)(s)ds are bounded on [0,»). Since
%(9)(t) must correspond to a solution w of (21) for g(t) = f(xt(@));
it follows that X(p)(t) is essentially bounded ivaé(G) is essentially
bounded.

since V(p) = -c(|e(0)]) =0 and ‘V(xt(@)) is bounded below,
V(Xt(w)) - a constant as t -»= and, thus, fgc(x(w)(t))dt exists.
Suppose x(9)(t) does not approach zero in C as t = o and let
P % 0 be any n-vector such that there is a sequence tn —w g5 n o
with x(@)(tn)~—;p as n —»w. Such a p exists since ‘x(@)(t)] is
bounded for % 2 -r. There is an ‘e > 0 such that c(ﬁ) >8 for y
in Se(p) = {y: |y-pl <e}. If x(@)(t) remains in Se(p) for 811
tz %, 20, then fgc(x(@)(t»dt = 4 which is_a contradiction. The
other possibility is that x(@)(t) leaves S€(p) an.infinitevnumber of
times. Since | x(@)(t)] 4is essentially bounded, each time x{®)(t)
returns to Ne it must‘remgin a positive time T. Again,‘ﬁhis implies
fgc(x(m)(t))dt = w and a‘céntradiction. _Therefore.'nx£(¢)n -0 as
"t —» o and, consequently; f(xt(@)) -0 as t.—aw. Frog_the'Previous
remarks, one finally obtains. ess suprgtlk(Q)(T)| —%d aé t 5o to

complete the proof of the theorem.
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As a particular application, consider the equation
(22) %(t) + ax(t) + bx(t-r) =0

where a >0, b° <1. The condition B <1 implies the hypothesis of

the theorem on the corresponding equation (19) is satisfied., If
2 1 0,2, s
v(p) = (0) +z [ @7 (0)as

1/2 ‘
then v / (p) can be used as a norm in W% and

: q P
(@) = ~ap7(0) - 2= ¢7(-x) = -0 (0).

The conditions of the theoremare satisfied and one can thus assert that

any solution  x(¢} of (22) with ess supe\é(é){ bounded satisfies
supelx(@)(t)l + esslsupeli(®}(t)[ -0 as t - «,

Theorém L above does not use the concept of limit dynamical sys-
tem although imbedding in another space is used in the proof. One‘couldv
easlly state a result based upon Theorem 3 if we had proved in Section 2
that the neutral equation (18) defines a dynamical system on Wg for
f(®) smooth ehéugh. Rather than dwell on this point at length, we only
look at equation (22) again letting & = Wg, ¥ = W;; yé?(w)' be the

function used before and '@z = %g,(@) + Yéf(é)' One easily sees that

g = -"(0) +(0))
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and, thus, the conditions of Theorem 5 are satisfied for any 1. Con-

sequently any solution of (22) with initial value in wg is bounded in

2 1
W2 and approaches zero in Wé as t — oo,

equation
u_ o=u,, - e(l-ug)u. €>0
XX tt 12

(23) u(0,t) = u(1l,t) =0

U—(X,O) =(P(X)) ut(x,O) = W(X)) CP(O) 2@(1) = 0.

The state variables for this equation are (u(o,t),ut(o,t)) with u(0,t) =
u(1,t) = 0. Consider the space ¥ of all functions (@,¥), ©(0) =o(1) =0,

fi(¢§«p2+¢2)dx. Since fipidx 2 @2 if @(0) =¢(l) =0 it follows that

. ’ . 2 .
¥(0) = ¥(1) =0, ¢ ¢ w%, Vv € L7, The

. 2
o 1s given by ”(@,ﬂﬁ”ifﬂ
an equivalent norm can be defined from the function
1, 2 2
Voo, ¥) = [ (@ +¥7)ax

The function Vl(u,ut) along the solutions of the equation is simply the

energy of the free system (¢ = 0), A few computations gives

» l 2 2
Vl(u,ut) = -2¢ fout(lmu Yax

. 12, 2
Vilo,¥) = -2¢ [ ¥ (1-07)ax
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2 . y X . .
If u” =1, then Vl(u,ut) = 0 which implies V,(u,u.) 1is bounded. If

v (p,¥) <1 then ¥ (wu) =0 implies V,(wuw) =1-8, 8>0, for all
t and féq)idx >cp2(x)', 0 x5 1 implies u2(',t) £ 1-8 for all +.
Therefore, if we assume the initial values satisfy VI(Q,W) < 1, then the
solution of (23) always stays in this set and ﬁl £ 0, This gives us a
dynamlcal system on this set and the solution (0,0) is stable relative
to the norm in ¥. One certainly suspects that these observations iﬁply
that solutions should also approach zero as +t -»> o, On the other hand,
it is not obviocus just from the fact that the energy is bounded.

We proceed now to show more ; namely, we construct a dy-
namical system on a smaller space é} and apply the preceding theory.
Consider the space (@ of functions @,y with 9(0) =¢(l) =0, ¢ € Wg,

2 2 2

Ve W;O. Then || (o,V ”é% s (wxx«pxy@ Y+ ) An quivalent norm is

given by the function

V(@,W} = V ((P,“fr) + V2(<P;\l!)
W0, = 1o + Ve

Ve' is somewhat like another energy function for the free linear equation

(e = 0). Some more computations show that

*. 1 2 2 )
Vg(u,ut) = -2€ fo<“xt) (l«u‘)dx

V,(m V) = -2¢ f vy (l - )

Combining the above results, we obtain
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V(9,¥) = -2¢f (¥ +¥7) (1) dx
If W< 1, then ﬁ(u,ut) =0 and V(uu) is bounded.
If initial values satisfy V(o,¥) < 1, then V(u,u,) £ 1-8, 8 >0, for
all t and the solution wu of (25) satisfies u2(x,t) < 1-8 for all: t.

We therefore have a dynamical system on B0 (o, v(o,¥) < 1}. .Alsb,

V(@,W) < 1 implies. Vl(w,W) < 1. We can now apply the above theory since
the natural mapping which imbeds 4 into ¥ 1is a compact map. There-
fore, every bounded orbit in @ is in a compact set in %. The condi-

tions of Theorem 3 are satisfied. The set R is given by

R = ((9,¥) € B: V(o,¥) =0} = ((¢,0))

PR

The largest invariant set N din R of the 1imit dynamical syétem
certainly belongs to the set of generalized solutions of the equation
which are defined on (~o,) and belong to Zn {¢I V(p,¥) <1} NR.
This implies the generalized solution must have ‘ut

solution is a function of x alone. But this impliés the solution also

3

= 0; that is, the

is a generalized solution of u. = 0. Therefore u(t,x) = ax+b and
u(t,0) = u(t,l) = 0 implies wu = O. Consequently, M = (0,0) and we

have that every solubion in é? aﬁ@roaches 0 in ﬁf; that is, -0

U, U,y

ag t — o,
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-6, Extended dynamical systems. The purpose of this section is to point

out the relationship between the concept of limit dynamical system intro-
duced in section 3 and the concept of extended dynamical system discussed
by Hale and Infante in [ 1]. Throughout this section, it will be assumed

€@ and ¥ are Banach spaces and § C %

Definition 5. Let u be a dynamical system on 4. Let #B% ve the set

of ©® in % which are in the closure of B in ¥ by bounded sequences

such that to every ¢ in @i there is associated a function u*(t,p) in

% for t in R’ with the property that [lu(t,0 q)-u*(t,q))“%—%o as n - w

uniformly on compact subsets of R"  for every bounded segquence (q)n} in
o . +

A with Hcpn-cpl]%—ao as n - . We refer to the function u*: K x &% «;(B—i

as the extension of the dynamical system u  to é? :*L or simply as the ex-

If the extended dynamical system exists, then it ié an ex-
tension of u in the usual sensej that is, w¥(t,p) = u(t,0) if ¢ is in
f#. Also, it is easy to prove that ux(0,p) =9, ux(t+7,9) = u*(t,u*(7,9)),
t,T 20 and u*(t,cp)v is continuous in t. It i‘s' not known whether u*(t,p)
is, continuous in ¢ and, therefore, it is not known whether u¥* is a‘dy—
namical system on B*. _

If u is a dynamical system on  and %, then the éi-
tended dynamical system u¥ exists.and u¥* = u, Suppose (/3’* is defined
in Definition 4 relative to the iimit dynamical system ana q)A in {8*
ig such that ¢ ©belongs to “i””’)’ the w-1imit set of,thé orbif Y+(1b)

in &. 1f Y+(‘¢r) is bounded in 48, then @ clearly belongs to ﬁi.
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Therefore, if the limit dynamical system had been defined relative to the
a~-limit sets of orbits which are bounded in g, then @* ’is a subset of
Bi Even with this definition 8* could be a proper subsét of ﬁ{. .
’ The qugstion of the existence of an extension of a dynamical
system seems to be rather difficult. The answer to the following question
is not even known: Is there a dynamical system u on § Which’ has an
extension to @i and yet is not a dynamical éystem on ﬁf'?

The above concept of extension of a dynamical gystem.was intro-
duced by Hale and Infante [ 1] but the definition of dynemical system in
[ 1] is stronger than the onéfused here. More precisely, a dynamical sys-
temon H in [ 1] is a function wus R' x@—e@ with the properties listed
in Definition 5 and in addition u(f,@) is uniformly continuous in t,9
for t,9 in bounded sets. If u(t,p) is linear in ¢, then this last
hypothesis implies that ﬁ(t,') ‘is a uniformly continuous semigroup of
transformations. Therefore, a classical result in [ 1Z] implies that the
infinitesimal generator of this semigroup must be é bounded linear opera-
tor. This is much too restrictive for the applicaﬁions of the theory and
the above definiﬁibn seemé tq Ee a mofe a?propriate concept of extension.
The author is indebted to V. Mizel for pointing out this shortcoming of
the definition in [ 17. |

The results in [ 1] easily carry over to the situation dis-
cussed here if one always adds the hypothesis that u 1is a dyhamical sys->
tem on & Egg__iﬁ The uniforwity condition mentionedrabove seems  to be

necessary 1f one does not make this latter assumption.



References .

[1] Hale, J. K. and Infante, E. F., Extended dynamical systems and stabil-
ity theory. Proc., Nat. Acad. Sci. 58 (1967), L05-409.

[2] Zubov, V. I., Methods of A, M. Liapunov and their Application (trans-
Tation) Groningen, P. Noordhoff, 1964,

(31 a) Hale, J. K., A stability theorem for functional differential equa-
tions. Proc. Nat. Acad. Sci. 50 (1963), 942-946; b) Sufficient con-
ditions for stability and instability of autonomous functional dif-
ferential equations. J. Diff. Equations 1 (1965), 452-482.

[4] Hale, J. K, and Imaz, C., Existence, uniqueness, continuity and con-
tinuation of solutions for retarded differential equations. Bol. Soc,

Mat. Mex. (1967), 29-37.

[51 Coleman, B. and Mizel, V., Stability theory for functional differen-
tial equations, Arch, Rat. Mech, Anal. To appear.

{61 Driver, R., Existence and continuous dependence of solutions of a neu-
Tral Functional-differential equation. Arc. Rat. Mech. Ana. 19 (1965),
149-165,

[7] Hale, J. K. and Meyer, K., A class of functional equations of neutral
Type. Memoirs AMS, No. 76 (1967).

[81 Sobolev, S, L., Applications of Functional Analysis in Mathematical
“Physies. Translations of Mathematical Monographs. Am, Math. Soc.,
1963. .

[9) Bers, L., John, ¥. and Schechter, M., Partial Differential Equations.
" Tectures in App. Math. Vol. 3, Interscience, 196k,

[10] IlaSalle, J. P., An invariance principle in the theory of stability.
Int, Symp. on Diff. Egs. and Dyn. Sys., p. 277. ed. J. Hale and
J. P. laSalle, Academic Press, 1967.

[11] Levin, J. J. and Nohel, J., On a nonlinear delay equation, J, Math.
Ana. and Appl. O (1904), 31-Lk, ,

[12] Hille, E. and Phiilips, R., Functional Analysis and Semigroups. Am,
Msth. Soc. Collod. Publ., Vol. 31, 1957.




